Direct biological conversion of electrical current into methane by electromethanogenesis.

نویسندگان

  • Shaoan Cheng
  • Defeng Xing
  • Douglas F Call
  • Bruce E Logan
چکیده

New sustainable methods are needed to produce renewable energy carriers that can be stored and used for transportation, heating, or chemical production. Here we demonstrate that methane can directly be produced using a biocathode containing methanogens in electrochemical systems (abiotic anode) or microbial electrolysis cells (MECs; biotic anode) by a process called electromethanogenesis. At a set potential of less than -0.7 V (vs Ag/AgCl), carbon dioxide was reduced to methane using a two-chamber electrochemical reactor containing an abiotic anode, a biocathode, and no precious metal catalysts. At -1.0 V, the current capture efficiency was 96%. Electrochemical measurements made using linear sweep voltammetry showed that the biocathode substantially increased current densities compared to a plain carbon cathode where only small amounts of hydrogen gas could be produced. Both increased current densities and very small hydrogen production rates by a plain cathode therefore support a mechanism of methane production directly from current and not from hydrogen gas. The biocathode was dominated by a single Archaeon, Methanobacterium palustre. When a current was generated by an exoelectrogenic biofilm on the anode growing on acetate in a single-chamber MEC, methane was produced at an overall energy efficiency of 80% (electrical energy and substrate heat of combustion). These results show that electromethanogenesis can be used to convert electrical current produced from renewable energy sources (such as wind, solar, or biomass) into a biofuel (methane) as well as serving as a method for the capture of carbon dioxide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis

The conversion of electrical current into methane (electromethanogenesis) by microbes represents one of the most promising applications of bioelectrochemical systems (BES). Electromethanogenesis provides a novel approach to waste treatment, carbon dioxide fixation and renewable energy storage into a chemically stable compound, such as methane. This has become an important area of research since...

متن کامل

Electromethanogenesis: the direct bioconversion of current to methane.

Full Text HTML Methane can be a problem or a solution, depending on one’s viewpoint or circumstance. For Bruce Logan and co-workers at Pennsylvania State University, it’s both. It’s a problem when the researchers want to make hydrogen gas in microbial electrolysis cells (MECs), because making methane reduces hydrogen yield. The researchers have been studying the formation of methane in MECs in ...

متن کامل

Electricity from methane by reversing methanogenesis

Given our vast methane reserves and the difficulty in transporting methane without substantial leaks, the conversion of methane directly into electricity would be beneficial. Microbial fuel cells harness electrical power from a wide variety of substrates through biological means; however, the greenhouse gas methane has not been used with much success previously as a substrate in microbial fuel ...

متن کامل

بررسی تولید گاز سنتز در راکتور پلاسما گلایدینگ به روش اکسیداسیون جزئی متان

Synthesis gas is a mixture of hydrogen and carbon monoxide which is used in many chemical and metallurgy processes and is the main intermediary for some chemical compounds like methanol and ammonia, liquid fuels and solvents. Various methods of synthesis gas are available and partial oxidation of methane is one of them. One of the newest techniques is to use plasma reactors for this purpose whi...

متن کامل

Dry reforming of methane under an electro-catalytic bed: effect of electrical current and catalyst composition

Dry reforming of methane (DRM) has been investigated under an electronactivated catalytic bed in a thermo-electrical reactor. The main objective of this work was to investigate what the impact of the electrical current on the conversion of methane is. The combination of thermal and electrical energy allowed achieving higher conversions for both reactants at temperatures varying from 850–950°C. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 43 10  شماره 

صفحات  -

تاریخ انتشار 2009